Comparison between Satellite and Ground-Based NO₂ Total Content Measurements

Yu. M. Timofeev*, D. V. Ionov*, A. V. Polyakov*, N. F. Elanskii**, A. S. Elokhov**, A. N. Gruzdev**, O. V. Postylyakov**, and E. V. Rozanov***

> * Research Institute of Physics, St. Petersburg State University, Ul'yanovskaya ul. 1, Petrodvorets, St. Petersburg, 198904 Russia

** Oboukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017 Russia

*** Voeikov Main Geophysical Observatory, ul. Karbysheva 7, St. Petersburg, 194021 Russia

Received December 28, 1999; in final form, May 30, 2000

Abstract—The results of measuring the total content of NO₂ by the *ERS-2* satellite (GOME instrumentation) in 1996 and in the first half of 1998 are compared to the data of simultaneous ground-based measurements carried out at Zvenigorod (Moscow region, Russia). In a number of cases, the satellite data are significantly greater in value than the ground-based data. For the first half of 1996, the mean difference between the GOME data and the half-sum of the sunset and sunrise ground-based data amounts to about 33%. The accuracy of the satellite measurements performed in 1998 is found to be significantly higher than that in 1996, which appears to be associated with the improvement of the GOME data processing technique.

INTRODUCTION

Monitoring nitrogen oxides in the atmosphere is of importance in connection with their role in the photochemical balance of ozone and other climatically and photochemically active gases [1, 2]. Information about the NO₂ content and horizontal distribution near the tropopause is of special interest. This information is necessary to estimate NO_x emissions due to increasing air traffic. These emissions affect the ozone content in the upper troposphere, creating, in particular, the maximum greenhouse effect.

A significant amount of information about spatial and temporal variations in the NO₂ content is obtained from satellite measurements. A slant geometry of observations is used in most such measurements. For example, in the SAGE II and POEM-2 experiments, NO_2 vertical profiles in the atmosphere were recovered from sunrise and sunset measurements of the absorption of solar radiation in the visible spectral region at slant paths [3, 4]. Similar measurements in the IR region of the spectrum were carried out in some satellite experiments by using IR instrumentation: a spectrometer [5] and the ATMOS interferometer [6, 7]. In the experiments described in [8–11], spatial and temporal variations in the NO₂ vertical structure were studied by measuring the thermal IR radiation of the earth's horizon. All those experiments studied the NO₂ distribution in the stratosphere.

Starting in 1995, nadir measurements of the NO_2 total content have been performed with the GOME

spectrometer (ERS-2 satellite). These measurements are based on an interpretation of the outgoing reflected and scattered solar radiation in the visible region [12]. A small absorption by NO_2 at nadir paths in the spectral region of interest (the optical thickness is 0.01-0.02, with variations of about 0.005) is responsible for a low accuracy of these measurements. According to the data of the European Space Agency (ESA), their errors can reach 100%. A comparison between satellite data and similar independently measured (ground-based, aircraft, sounding) data close to them in time and space makes it possible to estimate the actual accuracy of satellite measurements (see, for example, [13]), to reveal systematic errors in data obtained with different observation techniques, and to introduce corrections to dataprocessing algorithms.

The existing network of ground-based measurements of the NO₂ total content is sparse compared, for example, to the ground-based network of total ozone measurements. On the territory of Russia and other CIS states, the NO₂ total content is currently being measured at only five stations. This work compares the GOME data on the NO₂ total content and the groundbased data obtained at the Zvenigorod Research Station (ZNS) of the Institute of Atmospheric Physics (IFA), Russian Academy of Sciences. This station is incorporated into the International Network for Detection of Stratospheric Change (NDSC) as a station of highquality NO₂ total content measurements.

Fig. 1. Diurnal variation of the NO₂ total content near Zvenigorod in August calculated by a three-dimensional atmospheric model [20] (NO₂ unit is 10^{15} mol/cm², Greenwich time). Astronomical sunrise (*a*) and sunset (*b*) and also local noon (*c*) are marked in the figure.

GROUND-BASED MEASUREMENTS OF THE NO₂ TOTAL CONTENT AT THE IFA ZVENIGOROD RESEARCH STATION

The ZNS is situated at a distance of 60 km west of the center of Moscow and has the coordinates $(55.42^{\circ} \text{ N}, 36^{\circ} \text{ E})$. The station is placed in a rural area on the windward side of Moscow. The prevailing wind direction here is westward during most of the year. Major highways are far away from the station. Nevertheless, air pollution due to a distant transport of pollutants is observed occasionally in the troposphere. The pollutants are the most intense and frequent in winter. The procedure used to control the quality of data makes it possible to reject the data obtained under the conditions of a polluted troposphere. In addition, the interpretation technique used to determine the NO₂ total content and vertical profile enables the elimination of the NO₂ content in the polluted surface layer.

 NO_2 observations at the ZNS have been carried out since March 1990. In studies [14, 15], the measurement method used at the ZNS is described and some results of NO_2 total content measurements at the ZNS are analyzed. In September 1997, comparisons with the NDSC benchmark instrument were made. The error in determining the NO_2 slant content amounts to about 10% [16].

The NO₂ content is determined from measurements of the intensity of solar radiation scattered at the zenith. The spectral range of the measured solar radiation is 435-450 nm, the resolution is 0.7 nm, and the scanning time is 40 s. Observations are performed during periods of sunrise and sunset twilight at solar zenith angles of 84° to 96° . The NO₂ total content at the path of radiation formation (slant content) is retrieved from spectral measurements taken by the differential-absorption method.

In order to determine the NO₂ total content in a vertical column of the atmosphere, it is necessary to know the corresponding air mass values. These values are calculated on the basis of the theory of solar radiation transfer in a spherical atmosphere in the single scattering approximation, with invoking a nonstationary onedimensional photochemical model for O_x and NO_x. The model of radiative transfer in a spherical atmosphere takes into account ozone and NO₂ absorption, molecular and aerosol single scattering, refraction, and refraction divergence. The model's parameters—the vertical profiles of ozone, temperature, and air density—are extracted either from simultaneous measurements or, in their absence, from empirical models corresponding to the observation latitude and season [17–19].

The photochemical model makes it possible to calculate the daily variation of NO_2 vertical distribution, which is the input parameter of the model of radiative transfer. Considering photochemical processes is very important, because the NO and NO_2 contents undergo abrupt changes during periods of twilight.

The air mass values obtained are used in solving the inverse problem for the recovery of the NO_2 vertical distribution by a method similar to that employed by

Fig. 2. Comparison of the data of daily GOME measurements of the NO₂ total content (1) with the arithmetic mean of the morning and evening NO₂ total contents inferred from ZNS observations (2) in 1996 (NO₂ unit is 10^{15} mol/cm²).

McKenzie *et al.* [19]. The following quantities are determined: (1) the NO₂ content in 5-km layers in the stratosphere and troposphere (0–50 km), (2) the NO₂ content in a thin atmospheric surface layer, and (3) the NO₂ total contents in the troposphere (0–10 km) and stratosphere (10–50 km) as the sum of the NO₂ contents within the corresponding layers. The morning and evening NO₂ profiles and its total content are reduced to a solar zenith angle of 84°, which corresponds to the "daytime" portion of the NO₂ daily variation.

COMPARISON BETWEEN SATELLITE AND GROUND-BASED DATA OF NO₂ TOTAL CONTENT MEASUREMENTS

The NO₂ total content exhibits significant daily variations, especially at sunrise and sunset. An example of the calculated daily variation of the NO₂ content is presented in Fig. 1 (August, Zvenigorod). The calculation was made using a three-dimensional transport photochemical model of the atmosphere [20].

As follows from Fig. 1, the NO₂ content decreases abruptly at sunrise, then increases smoothly during daytime, and also increases abruptly at sunset. According to calculations, the NO₂ content varies rather slowly during daytime: the difference between evening and morning values ranges between 31% in winter and 57% in summer. The figure marks the times of astronomical sunrise (*a*) and sunset (*b*) and also the local noon point (*c*). The NO₂ content at this point is seen to be greater than its morning value but smaller than its evening value, being closer to the arithmetic mean of these two values. Since the *ERS-2* satellite equipped with the GOME instrument has a sun-synchronous orbit, its measurements occur at local noon points. Thus, the GOME data yield the NO₂ total content value closest to the arithmetic mean of the morning and evening values obtained from ground-based observations.

Figure 2 presents the results of pair comparisons between ground-based (ZNS) and satellite (GOME) data of NO₂ measurements. An ensemble of simultaneous measurements consisted of 331 GOME measurements taken during 1996 (processing version 2.0) and also 280 morning and 286 evening ground-based measurements. In order to take into account the NO₂ daily variation, we compared the GOME data to the arithmetic mean of the morning and evening values obtained from the corresponding ground-based data (in the absence of one of these two ground-based values, the available value was used in place of the arithmetic mean).

Comparing the satellite and ground-based data indicates that these data are generally inconsistent. The statistical characteristics obtained for the discrepancies observed between satellite (s) and ground-based (g)NO₂ measurements for the data ensembles under con-

Fig. 3. Comparison of the data of daily GOME measurements of the NO₂ total content (1) with the arithmetic mean of the morning and evening NO₂ total contents inferred from ZNS observations (2) from January 1 to July 26, 1996 (NO₂ unit is 10^{15} mol/cm²).

sideration also confirm this conclusion. The average discrepancy Δ_{s-q} amounts to 180%, the rms discrepancy σ_{s-e} reaches 550% (discrepancies are calculated about the average ground-based value), and the correlation coefficient R is equal to -0.04 ± 0.05 . On the whole, the NO₂ total content obtained from the GOME data is significantly (several times) greater than that inferred from ground-based observations. Particularly strong discrepancies between satellite and ground-based data in the form of sharp significant increases in the NO₂ content inferred from GOME measurements were observed in the fall of 1996 (Fig. 2). Most likely, these discrepancies are associated with errors in the spectral calibration of GOME measurements in the period from July 29 to October 15, 1996. These errors were revealed by the ESA only after the data on the NO₂ total content had already been disseminated.

Figure 3 presents the results of a similar comparison made for an ensemble of data obtained from January to July 1996 (75 simultaneous measurements). This comparison demonstrates a better agreement between ground-based and satellite data. The average discrepancy Δ_{s-g} amounts to 33%, and $\sigma_{s-g} = 67\%$. As previously, the correlation between the data is insignificant: the correlation coefficient R is 0.00 ± 0.12 . The figure clearly demonstrates substantial distinctions between the NO₂ seasonal variations inferred from satellite and ground-based (Zvenigorod) measurements. The results of NO₂ satellite measurements from January to April are substantially greater than the data of ground-based measurements and do not reveal any seasonal variation in NO_2 . On the other hand, the ZNS data show an increase in the NO₂ total content from winter to summer, which is characteristic of NO₂.

Fig. 4. Comparison of the data of daily GOME measurements of the NO₂ total content (1) with the arithmetic mean of the morning and evening NO₂ total contents inferred from ZNS observations (2) from January 1 to July 9, 1998 (NO₂ unit is 10^{15} mol/cm²).

A comparison between the data of ground-based evening measurements and the data of GOME measurements (processing version 2.3) made in the first half of 1998 is demonstrated in Fig. 4 (94 simultaneous measurements). The satellite NO₂ total content values are, on average, 8% less than the ground-based values, and the rms discrepancy comprises 57%. By comparing these results with the discrepancies obtained for the 1996 observational data, we can infer that the GOME data are in significantly better agreement with the ground-based data obtained in 1998. The correlation between the satellite and ground-based NO₂ data obtained in the first half of 1998 amounted to 0.22 ± 1.10 . The statistical characteristics of the corresponding discrepancies are presented in the table.

ANALYSIS OF COMPARISON RESULTS

A significant discrepancy (up to 500% for the rms discrepancy) is revealed between the data of satellite and ground-based measurements of the NO₂ total content. The NO₂ content values inferred from GOME measurements are frequently greater than those obtained from ground-based measurements. In light of the fact that the ground-based instrumentation and method of measuring the NO₂ total content at the ZNS have been certified within the framework of the NDSC, we can address the low quality of the NO₂ content data inferred from the satellite GOME measurements carried out in the ZNS region in 1996 (processing version 2.0).

On the whole, the results of our comparisons between two systems of measuring the total NO_2 content are consistent with the data of other studies aimed

at validating the GOME instrumentation. For example, the authors of work [21] compared the data of the GOME measurements taken from July to December 1995 with observational data of 19 ground-based stations located in different regions and showed that the GOME significantly overestimated the NO₂ content compared to ground-based observations: discrepancies were as high as 500%. In [22], NO₂ total content measurements were correlated with the simultaneous ground-based observations made in Bremen (Germany) and Ny-Alesund (Spitzbergen, Norway) in September 1995. The satellite data turned out to be, on average, 60% greater than the ground-based data. In [23], the GOME data were compared to the data of ground-based measurements of the NO₂ total content in Antarctica. It has been found that the GOME data are in good agreement with the data of ground-based observations and exceed them slightly.

Thus, the results of different studies demonstrate a systematic excess of the NO₂ total content values inferred from the GOME data over those obtained from ground-based measurements. Most authors [21-23] relate the observed discrepancy to some specific properties of NO₂ ground-based measurements. Under the conditions of the troposphere slightly polluted by nitrogen oxides, the method employed by most authors in ground-based measurements is more sensitive to the stratospheric part of the NO₂ layer. On the other hand, the data of GOME nadir measurements include the NO₂ total content throughout the entire atmosphere. In industrial and densely populated regions, the tropospheric NO₂ content can contribute significantly to the NO₂ total content. It is possible that this fact is responsible for the rather good agreement between the data of satellite and ground-based measurements in Antarctica, which represents the region with the background NO_2 content in the troposphere. However, this cause for discrepancies is unlikely in the case of NO₂ measurements at the ZNS, because these measurements are analyzed using an original interpretation method that makes it possible to determine the NO₂ total content from its tropospheric and stratospheric components.

It is believed that the main cause for discrepancies is a low information content (with respect to the NO_2 content) of nadir measurements of the outgoing reflected and scattered solar radiation. However, these discrepancies must be random rather than systematic in character.

The cloudiness frequently observed in the field of view of the GOME instrument must lead to the underestimation of the NO_2 content, because clouds partially shadow the troposphere.

There are also other possible causes for discrepancies.

(1) Spatial mismatch of measurements: the regions of formation of the solar radiation scattered at the zenith in ground-based measurements may be beyond

Statistical characteristics of the discrepancies between satellite (*s*) and ground-based (*g*) NO₂ total content measurements in 1996 and 1998: average (Δ_{s-g}) and rms (σ_{s-g}) discrepancies and correlation coefficient *R*

	Jan.–Dec., 1996	Jan.–July, 1996	Jan.–July, 1998
Δ_{s-g}	176%	33%	-8%
σ_{s-g}	549%	67%	57%
R	-0.04 ± 0.05	0.00 ± 0.12	0.22 ± 0.10

the position of a frame of satellite measurements. In the presence of tropospheric air pollutants (for example, in the Moscow region) that do not cover Zvenigorod, an abrupt excess of the GOME data over the ground-based data is possible.

(2) Errors caused in satellite measurements by errors in determining the height and amount of clouds, the albedo of the underlying surface, and other parameters.

(3) Differences in the parameters of radiative models used for satellite and ground-based measuring systems: molecular absorption coefficients, prior information about the state of the atmosphere, etc.

CONCLUSIONS

A comparison between the GOME data on the NO_2 total content and the data of NO_2 content ground-based measurements at the Zvenigorod Research Station of the Institute of Atmospheric Physics, Russian Academy of Sciences, (56° N, 38° E), leads to the following inferences.

(1) A poor agreement is noted between the data of NO_2 total content measurements at the ZNS and the GOME data in 1996. On average, the GOME data significantly overestimate the NO_2 total content as compared to the data of ground-base measurements.

(2) A somewhat smaller discrepancy between satellite and ground-based data is obtained for an ensemble of data from January to July 1996. The correlation between the data of these two types of measurements remains very low. It is possible that a low quality of the GOME data obtained in the second half of 1996 is associated with gross errors in the on-line processing of measurement results.

(3) Satellite measurements taken in the first half of 1998 (processing version 2.3) yield significantly better results compared to the data of 1996 (processing version 2.0). This is possibly due to the improvement of the method used for processing GOME measurements. Satellite measurements from January to July 1998 yield NO₂ total content values that are, on average, 8% less than those obtained from ground-based measurements at the ZNS; the corresponding rms discrepancy $\sigma_{s-g} = 57\%$.

2000

On the whole, it is noteworthy that the GOME data on the NO₂ total content, which are disseminated by the ESA, should be used with care in solving scientific and applied problems. This is also confirmed by the fact that, in May–July 1999, the ESA performed additional tests and improvements of the processing algorithms used in the GOME measurements.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 00-05-65224) and the European Space Agency (ESA/ESRIN, contract no. 13554/99/I-DC) in the framework of the project "ERS-1/2 Announcement of Opportunity" (code AO3-174).

REFERENCES

- 1. Scientific Assessment of Ozone Depletion: 1991, Geneva: WMO, 1992, Rep. 25.
- 2. Scientific Assessment of Ozone Depletion: 1991, Geneva: WMO, 1995, Rep. 37.
- Chu, W. and McCormic, M.P., SAGE Observations of Stratospheric Nitrogen Dioxide, J. Geophys. Res. D, 1986, vol. 91, no. 5, pp. 5465–5476.
- Bevilacqua, R.M., Introduction to Special Section: Polar Ozone and Aerosol Measurement (POAM II), J. Geophys. Res. D, 1997, vol. 102, no. 19, pp. 23591–23592.
- Laurent, J. *et al.*, Middle Atmospheric NO and NO₂ Observed by the Spacelab Grill Spectrometer, *Nature*, 1985, vol. 315, pp. 126–127.
- Russel, J.M. *et al.*, Measurements of Odd Nitrogen Compounds in the Stratosphere by the ATMOS Experiment on *Spacelab 3, J. Geophys. Res. D*, 1988, vol. 93, no. 2, pp. 1718–1736.
- Newchurch, M.J. *et al.*, Stratospheric NO and NO₂ Abundances from ATMOS Solar-Occultation Measurements, *Geophys. Res. Lett.*, 1996, vol. 23, no. 17, pp. 2373–2376.
- Russel, J.M. *et al.*, Validation of Nitrogen Dioxide Results Measured by the Limb Infrared Monitor of the Stratosphere (LIMS) Experiment on *Nimbus 7, J. Geophys. Res. D*, 1984, vol. 89, no. 4, pp. 5099–5118.
- Reburn, W.J. *et al.*, Validation of Nitrogen Dioxide Measurements from the Improved Stratospheric and Mesospheric Sounder, *J. Geophys. Res. D*, 1996, vol. 101, no. 6, pp. 9873–9895.
- Russel, J.M. *et al.*, The *HALOE* Occultation Experiment, *J. Geophys. Res. D*, 1993, vol. 98, no. 6, pp. 10777–10797.
- 11. Roche, A.E. *et al.*, The Cryogenic Limb Array Etalon Spectrometer (CLAES) on *UARS*: Experiment Descrip-

tion and Performance, J. Geophys. Res. D, 1993, vol. 98, no. 6, pp. 10763–10775.

- 12. Burrows, J.P. and Chance, K.V., SCIAMACHY and GOME: the Scientific Objectives, *Proc. SPIE: Opt. Methods Atmos. Chem.*, 1992, vol. 1715, pp. 502–512.
- 13. GOME Geophysical Validation Campaign, *Final Results Workshop Proc., ESA/ESRIN*, Frascati, Italy, 1996, ESA-WPP 108.
- 14. Elokhov, A.S. and Gruzdev, A.N., Spectrometric Measurements of Total NO₂ in Different Regions of the Globe, *Proc. SPIE*, 1993, vol. 2107, pp. 111–121.
- Elokhov, A.S. and Gruzdev, A.N., Estimation of Tropospheric and Stratospheric NO₂ from Spectrometric Measurements of Column NO₂ Abundances, *Proc. SPIE*, 1995, vol. 2506, pp. 444–454.
- Hofmann, D.P. *et al.*, Intercomparison of UV/Visible Spectrometers for Measurements of Stratospheric NO₂ for the Network for the Detection of Stratospheric Change, *J. Geophys. Res. D*, 1995, vol. 100, no. 8, pp. 16765–16791.
- Barnett, J.J. and Corney, M., Middle Atmosphere Model Derived from Satellite Data, *MAP Handbook. Middle Atmosphere Program*, Urbana: Univ. of Illinois, 1985, vol. 16, pp. 47–85.
- Keating, G.M. and Pitts, M.C., Proposed Reference Models for Ozone, *Adv. Space Res.*, 1987, vol. 7, no. 9, pp. 37–47.
- McKenzie, R.L. *et al.*, Altitude Distributions of Stratospheric Constituents from Ground-Based Measurements at Twilight, *J. Geophys. Res. D*, 1991, vol. 96, no. 8, pp. 15 499–15 511.
- Rozanov, E.V. *et al.*, A 3-D Stratospheric Chemical Transport Model, *J. Geophys. Res. D*, 1999, vol. 104, no. 9, pp. 11 755–11 781.
- Lambert, J.-C., Roozendael, M., Simon, P.C., Maziere, M., Pommereau, J.-P., Goutail, F., Sarkissian, A., Denis, L., Dorokhov, V., Eriksen, P., Kyro, E., Leveau, J., Roscoe, H.K., Vaughan, G., and Wahlstrom, C., GOME Products Validation with the SAOZ Network, *GOME Geophysical Validation Campaign, Final Results Workshop Proc.*, 1996, pp. 123–131.
- Ladstatter-Weibenmayer, A., Burrows, J.P., Richter, A., Wittrock, F., Buchwitz, M., Weber, M., Eisinger, M., and Neuber, R., Validation of GOME O₃ and NO₂ Measurements in Bremen, Ny-Alesund and Neumayer, *GOME Geophysical Validation Campaign. Final Results Workshop Proc.*, 1996, pp. 153–160.
- 23. Burrows, J.P., Buchwitz, M., Eisinger, M., Rozanov, V., Richter, A., Weber, M., and Ladstatter-Weibenmayer, A., The Global Ozone Monitoring Experiment (GOME): Mission, Instrument Concept, and First Results (Ozone and NO₂), Proc. 3rd ERS Symp. on Space at the Service of Our Environment, Florence, Italy, March 1997, ESA-SP 414.

Translated by Z. Feizulin